Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Sci Pollut Res Int ; 2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-2282340

ABSTRACT

The rise and spread of the coronavirus pandemic (COVID-19) has created an imbalance in all sectors worldwide, massively disrupting the global economy. Social distancing, quarantine regulations, and strict travel restrictions have led to a major reduction in the workforce and loss of jobs across all industrial sectors. One of the sectors completely exposed was the agriculture and food sector. The initiation of a nationwide lockdown by the government resulted in the shutdown of industries globally impacting the overall supply chain from farmer to consumer. The need of the hour is to propose effective solutions which can serve the dual purpose of market growth as well as customer satisfaction. This paper reviews the impact of COVID-19 on the agro-food system and its economy stressing critical factors like food production, demand, price hikes, security, and supply chain resilience. To conserve natural resources and meet the sustainable development goals (SDG), importance has been given to adopting sustainable agricultural practices with a prime focus on techniques like urban agriculture, crop rotation, hydroponics, and family farming. Possible advancements like the use of digital tools, mainly artificial intelligence, machine learning, deep learning, and block-chain technology, in the agro-food sector have been discussed as they could be a promising tool to develop a self-reliant society. This work would be a perfect platform to understand the growing impact of the pandemic as well as supporting cost-effective solutions for a green ecosystem.

2.
Life Sci Alliance ; 5(12)2022 08 04.
Article in English | MEDLINE | ID: covidwho-1975736

ABSTRACT

Human milk is important for antimicrobial defense in infants and has well demonstrated antiviral activity. We evaluated the protective ability of human milk against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in a human fetal intestinal cell culture model. We found that, in this model, human milk blocks SARS-CoV-2 replication, irrespective of the presence of SARS-CoV-2 spike-specific antibodies. Complete inhibition of both enveloped Middle East respiratory syndrome coronavirus and human respiratory syncytial virus infections was also observed, whereas no inhibition of non-enveloped enterovirus A71 infection was seen. Transcriptome analysis after 24 h of the intestinal monolayers treated with human milk showed large transcriptomic changes from human milk treatment, and subsequent analysis suggested that <i>ATP1A1</i> down-regulation by milk might be of importance. Inhibition of ATP1A1 blocked SARS-CoV-2 infection in our intestinal model, whereas no effect on EV-A71 infection was seen. Our data indicate that human milk has potent antiviral activity against particular (enveloped) viruses by potentially blocking the ATP1A1-mediated endocytic process.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antiviral Agents/pharmacology , Humans , Milk, Human
3.
Viruses ; 14(3)2022 03 18.
Article in English | MEDLINE | ID: covidwho-1760845

ABSTRACT

Pathogenesis of viral infections of the central nervous system (CNS) is poorly understood, and this is partly due to the limitations of currently used preclinical models. Brain organoid models can overcome some of these limitations, as they are generated from human derived stem cells, differentiated in three dimensions (3D), and can mimic human neurodevelopmental characteristics. Therefore, brain organoids have been increasingly used as brain models in research on various viruses, such as Zika virus, severe acute respiratory syndrome coronavirus 2, human cytomegalovirus, and herpes simplex virus. Brain organoids allow for the study of viral tropism, the effect of infection on organoid function, size, and cytoarchitecture, as well as innate immune response; therefore, they provide valuable insight into the pathogenesis of neurotropic viral infections and testing of antivirals in a physiological model. In this review, we summarize the results of studies on viral CNS infection in brain organoids, and we demonstrate the broad application and benefits of using a human 3D model in virology research. At the same time, we describe the limitations of the studies in brain organoids, such as the heterogeneity in organoid generation protocols and age at infection, which result in differences in results between studies, as well as the lack of microglia and a blood brain barrier.


Subject(s)
COVID-19 , Central Nervous System Viral Diseases , Zika Virus Infection , Zika Virus , Blood-Brain Barrier , Brain/pathology , Humans , Organoids , Zika Virus Infection/pathology
4.
Environ Chem Lett ; 19(2): 1715-1735, 2021.
Article in English | MEDLINE | ID: covidwho-1188110

ABSTRACT

Food wastage is a major issue impacting public health, the environment and the economy in the context of rising population and decreasing natural resources. Wastage occurs at all stages from harvesting to the consumer, calling for advanced techniques of food preservation. Wastage is mainly due to presence of moisture and microbial organisms present in food. Microbes can be killed or deactivated, and cross-contamination by microbes such as the coronavirus disease 2019 (COVID-19) should be avoided. Moisture removal may not be feasible in all cases. Preservation methods include thermal, electrical, chemical and radiation techniques. Here, we review the advanced food preservation techniques, with focus on fruits, vegetables, beverages and spices. We emphasize electrothermal, freezing and pulse electric field methods because they allow both pathogen reduction and improvement of nutritional and physicochemical properties. Ultrasound technology and ozone treatment are suitable to preserve heat sensitive foods. Finally, nanotechnology in food preservation is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL